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 ABSTRACT 

The use of molecular marker technologies has significantly advanced biological sciences 

and plant genetic analysis, particularly in revealing individual variations in DNA 

sequence. Molecular markers are useful tools in plants, particularly in marker-assisted 

selection, genome-wide association studies and QTL identification that impacts 

complicated hereditary traits. As the development of genomic tools in plant breeding 

and our knowledge of plant genomes increases, rapid and high-throughput phenotyping 

methods continue to be discussed as significant improvement applications in plant 

breeding programs. Since quantitative traits such as yield traits, quality traits, and 

resistance to abiotic/biotic stress factors in plants are an element that determines the 

indirect effects of both genetic and environmental factors and their interactions, 

phenotyping is a critical element in crop development. High-throughput phenotyping 

methods capture changes in environmental factors more sensitively compared to 

traditional applications, and thus selection efficiency is successfully increased. Correct 

and ethical use of genomic technologies with high-throughput phenotyping techniques 

is critical for long-term success and sustainability in the agricultural sector. In this 

review, the use of molecular marker technologies developed in integration with plant 

breeding in mapping studies and studies on the use of high-throughput phenotyping 

technologies in plant breeding are discussed. 
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INTRODUCTİON 

Advancements in genomic and molecular research in plant breeding have led to the 

development of various molecular markers, including (Rafalski, 2002). Numerous studies on plants, 

including population genetics, genetic mapping, resource identification, and the creation of markers 

associated with significant traits, have been made possible by the advent of DNA-based molecular 

marker techniques (Kefayati, 2019). Furthermore, molecular markers find application in the 

following domains: genotype identification; variety registration; breeding line identification and 

registration tests; hybrid variety purity tests; assessment of genetic diversity; identification of the 
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genetic source of gene resources; estimation of agricultural performance and adaptability; and so 

on (Eserkaya Güleç, 2010; Bianco et al., 2011). The of primary importance application areas of 

molecular markers in plant breeding are the use of marker-assisted selection (MAS), genome-wide 

association study (GWAS), genotypic characterization and QTL mapping (Yirgu et al., 2023). 

RFLP, RAPD, SSR, DArT and SNP markers are widely used in breeding (Khlestkina and Salina 

2006). Some distinguishing features of these markers are given in Table 1. SNPs are differences in 

a single nucleotide occurring in the genome sequence. Compared to other types of markers, SNPs 

are a common type of variation in DNA and are discovered at a significantly higher rate in the 

genome (Tian et al., 2021). They can appear in intergenic, coding and non-coding regions of the 

genome (Ren et al., 2023). Considering their basic characteristics, they are among the codominant 

markers, which allows SNPs to distinguish between homozygous and heterozygous alleles. The rate 

of polymorphism is high. For this reason, it can be used as an significant tool for genetic mapping, 

GWAS, map-based on cloning and MAS (Amitiye, 2021). Additionally, they are used to find 

polymorphisms that other markers fail to identify. Due to their biallelic origin, SNPs are less 

polymorphic than SSR markers; however, this shortcoming is easily compensated by their prevalent 

distribution throughout the genome and their ability for high-throughput automation. SNP markers 

offer an advantage over SSRs due to their independence from gel technology and single base pair 

position differences in genomes (Manivannan et al., 2021). Their high density increases the 

probability of detecting polymorphisms in target genes, making them popular in plant molecular 

genetics. 

 

Tablo 1: Comparison of Properties of Different Molecular Marker Techniques 

Molecular Marker Type 
Being PCR 

Based 

Inheritance 

Type 

Polymorphısm 

Level 

RFLP(Restriction Fragment Length 

Polymorphism) 

Hybridization 

based 

Co-

dominant 
Low/Medium 

RAPD (Random Amplified Polymorphic 

DNA) 

 

PCR Dominant Medium/High 

SSR (Simple Sequence Repeats) PCR 
Co-

dominant 
High 

SNP (Single Nucleotide Polymorphism) PCR 
Co-

dominant 
High 

DArT (Diversity arrays technology) 
Hybridization 

based 
Dominant Extremely High 

 

Genomic technologies have recently provided high-quality and valuable information while 

also reducing the cost of acquiring large-scale genomic data (Gu et al., 2022). However, collecting 

reliable phenotypic data for multiple traits from thousands of plots in a short time is one of the major 

challenges in scaling up plant breeding programs or incorporating selection for multiple traits 

simultaneously (Chawade et al., 2019). Of late years, intensive work has been done on the 

investigation of genome-based associations (GWA) to identify new genomic associations 

associated with quantitative traits in plants (Sajjad et al., 2012). A research method called a GWAS 

looks for correlations between genotypes and traits by screening a population's complete genome. 

Traditional breeding techniques might be difficult when environmental factors affect quantitative 

qualities. To overcome these obstacles, it is crucial to combine traditional and molecular approaches 
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(Arruda et al., 2016). One of the foremost areas of use of molecular markers is genetic mapping 

studies (Singh, 2017). Linkage mapping (LD) and association mapping are two of the most common 

methods used to detect the relationship between molecular markers and phenotypic traits (Xu et al., 

2017). Both approaches have their own differences, advantages, disadvantages, challenges, costs, 

and requirements (Alqudah et al., 2020). Genetic mapping studies aim to determine the locations 

of genes and markers on the chromosome, map QTL regions and determine their distances from 

each other. Linkage maps are used to identify these QTL regions, detect the relationship between 

markers and characters and determine their positions on the map (Madhusudhana, 2015).  In the 

technique called Linkage Mapping, generally backcross, haploid, Recombinant inbreed lines (RIL) 

and F2 populations obtained from the same mother and father are used. Since the stages of obtaining 

phenotypic data and developing special populations (F2, GM, RIL) in Linkage Mapping are tedious 

and time consuming, association mapping has become a practical application. In addition, as a new 

alternative to traditional linkage mapping, association mapping has significant advantages such as 

greater map density, less study time on natural populations with high and distinct diversity, and 

greater allelic diversity (Yu and Buckler, 2006). 

 

The method of genotyping molecular markers on a genome-wide scale has become possible 

thanks to recent advances in computational statistics and high-throughput genomic technologies 

that enable rapid and efficient discovery of these markers (Xiao et al., 2022). This has made it easier 

to use GWAS to track and assess complicated traits and quantitative characteristics that segregate 

across populations. Association Mapping is a method that uses the relationship of genotype to 

phenotype to identify QTL regions associated with important target traits (Verdeprado et al., 2018). 

Association mapping evaluates the correlation of character differences with molecular marker 

polymorphisms on a population basis. Since the population used in linkage mapping studies is 

obtained by crossing two parents, genetic variation is limited, while in relationship mapping, genetic 

variation is very high since a population consisting of many generations is used (Ashwath et al., 

2023). Association mapping establishes a connection between phenotype and genotype on the basis 

of LD, using the linkage between loci seen in the population or the non-random association of alleles 

located at different loci (marker locus and phenotypic trait locus), additionally known as gametic 

phase imbalance, gametic imbalance and allelic association (Ibrahim et al., 2020; Ersoz et al., 

2007). The most obvious fundamental difference in association and linkage mapping studies is the 

answer to the question of whether recombinations occur in populations or in families. In fact, in 

practice, both of these mapping techniques identify molecular markers associated with QTL, so 

even though they have a common strategy, differences between them cannot be ignored (Figure 1). 

It is anticipated that in the future, when the era of worldwide genome sequencing begins, this 

difference in mapping techniques will also disappear (Myles, 2009). 
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Figure 1: Key differences in link mapping and association mapping techniques. 

 

With molecular marker integrated into plant breeding; QTL mapping, GWAS, MAS and 

gene pyramiding studies have significantly improved plant breeding by selecting and improving 

desired traits such as adaptation, yield, stress tolerance, quality, disease and pest resistance 

(Karaağaç and Balkaya, 2017). At the same time, more effective and reliable phenotyping methods 

need to be developed in parallel to further improve modern plant breeding (Chawade et al., 2019). 

Although the evaluation of desired traits in breeding programs is done with traditional methods, 

these techniques are time-consuming and can create bias due to different evaluation methods of 

different people. Phenomics, like genomics, has become an important research topic in plant 

breeding (Xie & Yang, 2020). Plant phenotyping aims to measure complex traits like resistance to 

biotic and abiotic stress agent, yield and quality at a certain level of organization from organs to 

canopies (Yang et al., 2020). For this purpose, it is obvious that phenotyping requires 

interdisciplinary expertise, especially in biological and computer sciences, mathematics and 

engineering (White et al., 2012). Of late years, thanks to developing technology, more effective 

phenotyping technologies have been developed. Compared to traditional phenotyping, the use of 

these effective technologies, using robotics, artificial intelligence and sensitive peripheral control 

imaging technologies, evaluates plant growth, performance and phenotypic responses to stress 

factors in field and greenhouse conditions (Li et al., 2014). It is hoped that these studies will increase 

in the coming years and, just like molecular and genomic technologies, they will be further 

developed and integrated into modern plant breeding.  

 

Quantitative Trait Loci Mapping with Molecular Markers in Plant Breeding 

Many agriculturally important and desirable traits, especially the majority of quantitative 

characters as yield and yield related characteristics, quality or resistance to stress conditions, are 

controlled by various genes in plant breeding. However, it is unclear how many genes interact and 

how many genes control each other for these quantitative traits (Mohan et al., 1997). Nowadays, 

with the use of genetic or marker technologies in plant breeding projects, it has become much easier 

to learn the genes and their roles related to phenotypic traits that are significant for agriculture. 

Quantitative trait loci (QTL) are identified by constructing a genetic map, which is one technique 

used to create markers linked to a characteristic studied in plants (Salazar et al., 2014). To create an 

excellent high density genetic map, a reference genetic map created using markers is necessary. The 

idea of genetic mapping involves creating new genetic maps in various populations (Figure 3). 

These genetic maps allow QTL analysis to be used to place significant characters on linkage groups, 
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find markers associated with significant characters, and aid in the characterization and cloning of 

significant genes. QTL mapping is defined in molecular breeding as the process of identifying genes 

using genetic markers that affect quantitative traits. Knowing the exact location of these genes in 

the genome is greatly benefited from in plant breeding studies (Ürün, 2023). Molecular markers are 

extensively employed in several crops to track genomic areas and loci for resistance qualities 

against different abiotic and biotic stressors (Phillips and Vasil, 2013; Gupta and Varshney, 2004). 

The development and use of marker technology in plants has enabled the control of genetic 

information underlying quantitative traits in particular.  

 

In plant breeding, especially when it comes to developing new varieties with desired traits, 

it is necessary to know where these genes are located in the genome for both effective and rapid 

breeding applications because many genes affect quantitative aspects. A suitable population can be 

used to discover the positions of significant genes in a certain chromosome region by using the QTL 

analysis approach (Burçak, 2008). The target of QTL map investigations is to clone the genes that 

govern significant vegetative features based on these maps and create marker genes that can be 

identified from the vegetative trait of interest more successfully (Rafalski and Tingey, 1993). 

Nowadays, with the discovery of numerous QTL regions for desired traits in the chromosomes of 

hybrid populations formed by crossing 2 dissimilar parents and the deciphering of their nucleotide 

codes, some of the identified markers and important gene regions are still used successfully in MAS 

and backcrossing. Using DNA or molecular markers, it is possible to locate QTLs and map and map 

their distribution within the genome (Kushanov et al., 2021). The identification of the location of 

these genes within the genome is of significant importance for the field of plant breeding studies. 

Locating QTLs for heritable traits of agricultural importance will enable future genetic 

manipulations (directional changes) and gene transfers between organisms. Lately, research on QTL 

have been conducted in many plant species and DNA markers associated with different traits that 

can be used in MAS have been developed (Diouf et al., 2018). QTL mapping is essentially the 

process of determining a relationship between a genetic marker and a measured trait. For instance, 

if tall plants among 250 individual wheat plants of different plant heights all have a special allele 

of a moleculer marker, then a QTL for plant height is very likely to be associated with that marker 

in that plant population. The process of determining if a QTL is associated with a marker involves 

classifying the population by genotype and utilizing correlative statistics to evaluate significant 

differences (Dhingani et al., 2015). The studies presented in Table 2 have mapped QTL regions 

controlling desirable traits in different plants and have been proposed for future use in plant 

breeding projects using MAS.  
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Table 2: QTL Mapping of Important Traits in Plants with Different Molecular Marker Techniques 

Plant Mapped Traits 
Number of 

QTL 

Marker 

Technique 
References 

Wheat (Triticum 

aestivum L.) 

Yield and Physiological 

Traits (Drought Tolerance) 

225 QTL DArTs, SSRs and 

EST-SSRs 

Xu et al., (2017). 

Soybeans (Glycine max 

(L.) Merrill) 

Yield Related Traits 47 QTL SNP Liu et al., (2017). 

Triticale Powdery Mildew 

Resistance 

23 QTL DArT, silicoDArT 

and SNP 

Dyda et al., 

(2022). 

Sesame Yield-Related Traits 

 

46 QTL Specific-Locus 

Amplified 

Fragment (SLAF)  

Mei et al., (2021). 

Chickpea (Cicer 

arietinum) 

Heat stress-related traits 

(canopy-closure and early 

flowering) 

14 QTL DArT Jeffrey et al., 

(2024). 

Rape (Brassica napus) Crude Fiber and Quality 

Traits' Genetic Variation 

 

6 QTL 

 

15K SNP Holzenkamp et al., 

(2025) 

Rye (Secale cereale L.) QTL linked to resistance to 

leaf rust are identified. 

 

 129 and 140 

SNP-DArTs 

and 767 and 

776 silico-

DArTs  

SNP-DArT and 

silico-DArT 

Matuszkiewicz et 

al., (2024). 

Sorghum (Sorghum 

bicolor)  

 

Salt Tolerance 

 

53 QTL SSR Wang et al., 

(2020). 

Wheat (Triticum 

aestivum L.) 

Resistance to Stripe Rust 7 QTL SNP Tehseen et al., 

(2022).  

 

Genotype and Phenotype Association Approaches in Plant Breeding: Genome-Wide 

Association 

Of late years, the development of technology has led to the emergence of new techniques, 

as Next Generation Sequencing (NGS) and genotyping at high resolution, which are now widely 

used by researchers. The common point of these technologies can be described as revealing the 

differences on the genome as single nucleotide differences (SNP), which is the final point reached 

by molecular markers (Deokar and Tar’an, 2017). Association mapping provides useful information 

about the genetic architecture underlying quantitative traits in the genotype that are often unrelated 

to each other. The GWAS technique is a statistical method used to determine the genotype-

phenotype relationship (Figure 2). It combines SNPs found in the genotype and phenotypic diversity 

in a genome-wide context, with the aim of deciphering the loci underlying a particular trait (Alsaleh, 

2016). This technique is based on the examination of molecular markers distributed throughout the 

genome and their relationship with the trait under study. It utilises genotypes that contain 

recombination events from past to present in the genome of individuals in a population consisting 

of different individuals (Bajaj et al., 2015). This advantage of GWAS provides the opportunity to 

evaluate multiple alleles simultaneously while providing higher resolution in the genome, compared 
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to QTL mapping studies that are based on recombination events in only a few recent generations 

(Saini et al., 2022). GWAS technique is an effective approach to associate phenotypes of interest 

with genotypes and find causal genes/loci with higher precision (Hussain et al., 2022). It has a 

higher optical mapping resolution compared to standard genetic and linkage mapping techniques to 

identify candidate alleles/genes specifically related to the trait of interest (Kole et al., 2015). A large 

relationship panel of trading varieties and breeding lines/clones helps breeders discover superior 

alleles in their gene pool (Dwivedi et al., 2020). 

 

 
Figure 2: Combining High-Throughput Genotyping and Phenotyping in Plants: Example 

Schematic Illustration of the GWAS Technique 

 

GWAS significantly improves the study of genetic architectures associated with complex 

phenotypes for cultivar development in plant breeding and plays an effective and improving role in 

plant breeding by deeply investigating the genetic basis of plant phenotype variability (Li et al., 

2023). The most important advantage of the GWAS approach over other genetic mapping 

techniques is the use of natural populations as plant material for the traits under investigation (Korte 

and Farlow, 2013). This is because, unlike hybrid populations created by crossing two plants, 

natural populations have a high level of genetic diversity (Huang and Han, 2014). The utilisation of 

germplasm materials and genetic information derived from a single natural population in GWAS 

studies permits the investigation of the association between numerous traits and genotype, as well 

as the impact of genetic information derived from the genome on the phenotype (Alseekh et al., 

2021; Sukumaran and Yu, 2014). Thus, it eliminates the need for repeated population creation for 

use in traditional linkage and genetic mapping studies and significantly reduces the costs required 

to identify candidate alleles/genes for and gene sequencing, while also saving time (Rawat et al., 

2014). The genetic mechanisms of important quantitative agricultural traits such as yield, quality, 

tolerance to abiotic and biotic stress factors in plants are generally affected by the 

genotype×environment from the relatıonshıp with the effect of constantly changing environmental 

terms and are regulated by more than one gene (Gonzalez Guzman et al., 2022; Jakutis and Stainier, 

2021). These traits have a more complex genetic structure than a trait regulated by a single gene. 

Therefore, the use of GWAS to investigate the genetic mechanisms of plant traits has received great 

attention. By now, the majority of GWAS research in plants has focused on staple crops with 

economic value. In 2017, 49,769 unique SNP-trait correlations were discovered in the GWAS 
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database compiled from analyzes covering at least 3092 articles and 100,000 SNPs (Mohammadi 

et al., 2020). As a result, examples of research conducted with high-throughput genotyping GWAS 

technique approaches are given in (Table 3). 

Table 3: Abstracts of Research Using the GWAS Technique in Plant Molecular Breeding 

Plant Sample Size Traits Markers 

Marker Trait 

Associations 

İdentified 

 

References 

Barley (Hordeum 

vulgare L.) 
148 

Morphological 

traits related to 

drought stress 

tolerance 

407 Polymorphic 

marker (AFLP and 

SSR) 

167 significant 

marker trait 

associations 

divided into 65 

QTLs. 

(Jabbari et al., 

2018). 

Sorghum 

(Sorghum 

bicolor L.) 

96 

Agronomic Traits 

and Phenolic 

Content 

 

192.040 SNP 
40 significant 

SNP. 
(Lee et al., 2023). 

Canola (Brassica 

napus L.) 
399 

Freezing 

Tolerance Traits 

 

251.576 SNPs 

13 significant SNP 

and 25 candidate 

genes. 

(Chao et al., 

2021). 

Cotton (G. 

Hirsutum) 
231 

Fiber Quality 

Traits and Yield 

Components 

122 SSR and 4729 

SNP 

134 QTL for fiber 

quality traits and 

122 QTL for yield 

components and 

35 common 

candidate genes. 

(Liu et al., 2018). 

Rapeseed 

(Brassica napus) 
119 

Under drought 

stress, agronomic 

and yield-related 

characteristics 

 

52,157 SNPs 

1,281 SNPs 

related to 

agronomic and 

yield traits and 

215 candidate 

genes. 

(Salami et al., 

2024). 

Potato (Solanum 

tuberosum) 
237 Floral traits 12.720 SNP 

15 important 

SNPs related to 

flower 

characteristics. 

(Zia et al., 2022). 

Wheat (Triticum 

aestivum L.) 
600 

Resistance to 

PstS2 and Warrior 

Races of Stripe 

(Yellow) Rust in 

Bread Wheat 

Landraces 

25,169 SNP 

Across 19 

genomic areas, 47 

significant SNP 

markers were 

developed. 

(Tehseen et al., 

2020). 

 

High-Throughput Phenotyping Approaches in Plant Breeding: A Technological Revolution 

Genomic technologies have recently reduced the cost of acquiring large-scale genomic data 

while providing high-quality and valuable information (Bhat et al., 2016). However, collecting 

reliable phenotypic data for multiple traits from thousands of plots in a short period of time is one 

of the major challenges in scaling up plant breeding programs or incorporating selection for multiple 

traits simultaneously (Uyaner, 2020). In plants, phenotyping is carried out at many organizational 

levels, including field, canopy, whole plant, organ, tissue, and cellular levels (Großkinsky et al., 

2015). The data gathered are then classified as either physiological, structural, or performance-

based. Predicting how plants will react to various environmental conditions is made possible by 
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accurate phenotyping. Researchers employed manual procedures in the traditional methods used for 

this aim. Especially during studies on phenotyping plants, examination of the plant during its life 

cycle is restricted due to damage to the plants (Karaşahin and Samancı, 2018). These problems, 

which caused low efficiency and inconsistent results, showed that there was a need to switch to 

automation systems. Recent advances in sensor and information technologies have enabled plant 

breeders to increase phenotyping accuracy and speed while minimizing labor and cost using high-

throughput phenotyping (HTP) approaches (Shakoor et al., 2017). Studies in the field of precision 

agriculture applications have gained momentum over the last twenty years (Saiz-Rubio et al., 2020), 

and developments in detection and image processing technologies in particular have paved the way 

for studies to be carried out with high precision in this field (Shi et al., 2016). With the development 

of biotechnology, new breakthroughs in the field of DNA sequencing and molecular biotechnology 

in plant breeding have significantly enriched and deepened our knowledge of plant genomes (Mir 

et al., 2019; Haghighattalab et al., 2016). Despite the rapid development of plant genomic tools, 

current traditional methods used in phenotyping and selection are still slow, laborious and costly, 

creating an imbalance between genomic and phenomic data (Bhat et al., 2016).  

 

In plant molecular breeding, the essential requirement for successful variety development 

programs is to reveal a strong relationship between genotypic and phenotypic data and to make 

successful predictions about variety performance. The disproportionality of data related to high-

throughput phenotyping studies poses an obstacle to both genetic selection and gene mapping 

studies (Crain, 2016). Being able to establish a linkage between genotype and phenotype 

relationships will lead to success in the selection of varieties that are resistant to abiotic and biotic 

stress factors, can adapt to regional environmental conditions and are also high-yielding 

(Villalobos-López et al., 2022). High-throughput phenotyping and remote sensing offer the 

advantage of providing real-time data and capturing a comprehensive view of crop health and 

growth, allowing policy makers and farmers to make informed decisions and optimize agricultural 

practices for higher yields and sustainable resource management (Na et al., 2024). In this context, 

in recent years, many measurement methods such as spectroscopy, light detection and ranging 

(LIDAR), visible and far infrared rays, hyperspectral measurements, thermal imaging, three-

dimensional laser scanning and red, green, blue (RGB) imaging have been used with automatic 

remote sensing systems (satellites, automatic field robot systems, unmanned aerial vehicles, etc.) 

(Fu & Jiang, 2022; Tardieu et al., 2017; Singh et al., 2016). Large data sets obtained in a short time 

with these technologies, when used with machine learning algorithms such as Random Forest, 

PLSR, KNN, CNN, are successfully evaluated for purposes such as disease detection (Hernandez-

Rabadan, 2014), measurement of morphological features (Prado et al., 2018), classification (Kruse 

et al, 2014) and even yield estimation (Gonzalez-Sanchez, 2014) (Table 4). Thus, by increasing 

plant production, the food demands of the increasing world population can be met. Thus, the 

obstacles experienced in determining super genotype characteristics in variety development and 

breeding studies can be eliminated (Sankaran et al., 2015). Some studies using high-throughput 

phenotyping in various plant species using different technologies are given in Table 4. 
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Table 4: High-throughput phenotyping platform examples 

Technology Used Subject of 

Research 

Plant Type Observed 

Measurements 

Referances 

A Land-Based 

Platform and 

Unmanned 

Aerial Vehicle 

(UAV) 

Examine 

Drought 

Adaptive Traits 

Triticum 

turgidum L. 

Dry biomass, Leaf 

Curl, and 

Chlorophyll Content 

 

Condorelli 

et al., 

(2018). 

Camera and 

Sensor (BlueBox) 

Root 

Phenotyping 

Triticum 

aestivum L. 

Root Number-Root 

Length 

 

Wasson et 

al., (2016). 

UAV-Based 

Imaging 

Hyperspectral 

Tracking Crop 

Growth and 

Managing 

Fertilizer 

 

Triticum 

aestivum L. 

Leaf Area Index 

(LAI) 

Zhang et 

al., (2021). 

PhenoArch 

Phenotyping 

Platform 

Well-watered 

and Water 

Stress 

Conditions 

Zea mays L. Fresh Biomass, 

Transpiration Rate 

and Plant Leaf Area 

 

Prado et al., 

(2018). 

Spectrometer 

(HR2000) 

Drought 

Resistance 

Triticum 

aestivum L. 

Chlorophyll (ChlRI), 

Light diffusion by 

the leaf, 

Photochemical 

reflection, 

Flavonoids 

Rusakov & 

Kanash, 

(2022). 

Spectroscopy Metabolic 

Response to 

Drought Stress 

C.annuum and C. 

pepo 

Proline and Abscisic 

Acid 

Burnett et 

al., (2021). 

 

Conclusion and Recommendations 

This article provides an overview of the use of QTL and GWAS, high-throughput 

phenotyping approaches in plants. Gene maps derived from molecular markers have made it 

possible to genetically control quantitative traits, as these markers have become a fundamental 

component of plant breeding. Most agricultural traits of economic importance are polygenic and 

quantitative in nature and are controlled by many genes on the same or different chromosomes. 

QTL mapping is a method that uses molecular markers to find genes affecting traits of interest. 

With the discovery of QTLs for heritable traits important for agriculture, future genetic 

modifications (directional changes) and gene transfers between organisms have become possible. 

Analysis of the locations of relevant genes on chromosomes, the magnitude of their effects and 

whether the gene effect is dominant or additive, and the use of a suitable population for analysis 

can now be performed, especially by applying GWAS and QTL analysis methods. Genotyping and 

phenotyping in plants is a critical element in crop improvement through genetics because 
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quantitative traits as yield traits, quality traits, and resistance to abiotic/biotic stress factors in plants 

are an important determinant of the indirect effects of both genetic and environmental factors and 

their interactions. High-throughput phenotyping provides high-quality phenotypic data for GWAS 

and QTL by offering contactless and more efficient measurements, unlike traditional methods. This 

improves the understanding of the genetic structure of complicated plant traits. Integration high-

throughput phenotyping with genetic and association mapping approaches has broad applications, 

including investigating more phenotypes and genotypes. As genomic tools for plant breeding are 

developed and our knowledge of plant genomes increases, rapid and high-throughput phenotyping 

methods have been discussed as important advances in plant breeding programs since 2010. High-

throughput phenotyping methods capture changes in environmental factors more sensitively than 

traditional practices, thereby successfully increasing selection efficiency. Breeders are particularly 

interested in continuing to explore and use these new technologies to meet the primary goals of their 

plant breeding projects due to the short data collection time and the need to phenotype hundreds of 

plots. 
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