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ABSTRACT

The application of biochar has aroused great interest. Still, our understanding of the behavior
of biochar with soil properties and its relationship with potassium forms on soil health in
gypsum soils is limited. Biochar is a carbon-rich product that is used as a means to improve
soil properties. Twelve soil samples have been collected from some gypsiferous soils in Iraq
to determine the different forms of potassium and their relation with clay mineralogy and other
soil properties. Collect soil samples were put in small plastic pots and adding biochar at a rate
of 5 gm. Kg for each soil to evaluate the effect of biochar on potassium forms. The X-ray
diffraction showed that smectite was the dominant mineral in the studied soils followed by
lllite, Kaolinite, Palygoriskite and Chlorite clay fractions. Results showed that biochar
application improved all potassium forms and soil chemical characteristics. Biochar addition
increased all potassium forms, from (0.011-0.041) to (0.031-0.075) (Cmolec Kg1), from (0.05-
0.19) to (0.08-0.22) (Cmolec Kg*) and from (0.15-0. 41) to (0.25-0.61) (Cmolec Kg?) for
soluble, exchangeable and non-exchangeable potassium before and after adding biochar
respectively. Whereas increased soil cation exchange capacity from (4.8-11) to (9.8-18)
Cmolckg™? and organic matter from (3.5-13) to (7.9-19) gm. Kg?. It was found that the
correlation coefficient between potassium forms for all soils after adding biochar was high and
positive except for the pH.
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INTROUCTION

Gypsum soils are an interesting complex system, gypsum soils are generally arid to
semiarid and constitute about 12 % of Iraq's area(Khairo,2024; Ismaeal et al., 2024). Competition
between the calcium element on the one hand and the potassium element, on the other hand, occurs
on the surfaces of the exchange complex gypsum soils which depends on the ion's charge,
concentration, and size, which causes the potassium ion to be displaced from the exchange
complex ion exchange reactions and these ions are exposed to being washed out of the root
zone(Qadir and Al-Obaidi,2024). A high percentage of gypsum in the soil reduces its ability to
retain positive ions. Thus the soil’s ability to exchange positive ions decreases as the gypsum
content in the soil increases(Tirado-Corbala et al., 2019).

Potassium (K) is one of the essential elements required for plants(Alsajri et al., 2024). In
most soils, the total K reserves are generally large, but only a small portion of them are
immediately or slowly available for plant uptake(Alsultan and AL-Obaidi,2022). The potassium
content of soils varies depending on the soil texture, soil pH, and soil mineralogical
composition(Liu et al., 2020).The relations between potassium forms and soil properties can be

used to predict potassium availability in soil, potassium cycling, and potassium supplying power
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of soils(Elbaalawy et al.,2016). Soils differ in tendencies to fix applied potassium in forms
unavailable to plants and each soil has its fixing capacity for Potassium which must be satisfied
before a change in soil solution occurs(Al-Jumaily et al., 2022).

Biochar is a product resulting from the decomposition of organic materials and is rich in
carbon. It is important in agriculture, where it is used to improve soil quality (Khdir and
Rahman,2024). The use of biochar is one of these technologies that may be the key to producing
soil rich in nutrients, and has a positive effect that improving soil health(Yadav et al., 2023).
Biochar increases soil fertility by improving soil physical and chemical properties, enhancing
microbial actives related to nutrient availability and actively contributing to modifying gas
exchange in the soil ecosystem. Furthermore, it was hypothesized that the biochar application rate
affects the biochar surface oxidation rate, nature, and mineralization of functional groups when
added to soils. The study aims to compare biochars' effect on potassium forms in some lIraq

gypsiferous soils by improving some soil properties and relating them with potassium availability.

MATERIAL AND METHODS
Study area and samples collection

A representative of twelve surface soil samples (0-30 cm) has been collected from different
locations in Salahuddin Province central Iraq with different gypsum content, as shown in table (1)
and figure (1). The study area belongs to the climate of arid and semi-arid zones and is classified
as typic Torrifluvents as claimed by soil survey Staff (1999),(Mahmoud and Ismaeal,2024). Soil
samples were dried, crushed, and passed through 2 mm sieve, physical and chemical analyses were
carried out. Soil analysis was measured including Ec and pH was determined with soil water
extraction of 1:2.5 according to (Rhoades, 1996; Mahmoud and Ismail,2024) and (Thomas, 1996)
using a conductivity meter (YK2001CT) Lutron Taiwan and pH meter (HI 9017, Hanna
Instruments Inc USA) respectively. All potassium forms were estimated by flame photometer.
Tables (2,3) show studied soil properties and potassium forms before and after biochar adding. X-
ray diffraction was performed to determine mineralogy analysis. X-ray diffract data and clay
fraction quantitative mineralogical composition were obtained using a Philips X-ray diffract meter
according to Abdullah et al., (2019). The probability levels of 0.01 and 0.05 were compared using
a paired t-test (Hoshmand ,2017).
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Table 1. Coordinates of the soil sampling locations in the study areas using GPS.

Sample Soil locations Latitude (N) Longitude (E)

number
1 Shirgat 1 35°32°25.84” 43°13°50.38”
2 Shirgat 2 35°32°23.27” 43°15°07.41”
3 Makhool 35°08°20.13” 43°27°44.04”
4 Makhool 2 34°57°23.43” 43°26°02.88”
5 Baje 1 34°55°46.52” 43°31°22.54”
6 Baje 2 34°50°19.44” 43°32°51.23”
7 Tikrit 1 34°46°28.55” 43°43°49.66”
8 Tikrit 2 34°43°29.39” 43°39°17.16”
9 Dour 1 34°31°07.55” 43°51°30.46”
10 Dour 2 34°29°17.65” 43°49°19.91”
11 Tuzl 34°40°51.09” 44°24°59.48”
12 Tuz 2 34°53°20.66” 44°28°21.34”

Legend
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Figure 1. Soil sampling locations in Salahaddin, Irag.
Biochar production and incubation

A feedstock has been brought from a cornfield for the production of biochar. A rotein
processes were made, air dried, ground, and passed through 2 mm Sieve. The production of corn
biochar was carried out by using a slow pyrolysis procedure. Ready raw feedstock material was
heated to 400°C for 2h using thermal furnaces in an oxygen-limited environment. We wrapped
raw feedstocks in aluminum foil to minimize free oxygen during thermal heating. Then we put a
stainless cylinder into a muffle furnace with gradually heating to the point temperature. The
properties of prepared biochar at 400 C were E.C2.93 ds.m™, pH 8.6, cation exchange capacity
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16.52 C.molc kg, Organic carbon 412gm.kg?, P 0.72 gm. Kg*, N 15.00 gm.kg?, and K 1.82
gm.kg*. The previous methods described according to (Khadem et al., 2017; Song et al., 2019
).An incubation experiment was carried out to study the biochar effects on the differences in
potassium forms of gypsiferous soils. Twelve presentative gypsiferous soil samples were collected
from different gypsiferous regions. 5 gm of prepared biochar was added to 995 gm of gypsiferous
soils with a different gypsum content and mixed well in a 1 kg plastic pot. The plastic pots were
incubated for 8 weeks at 25C and moistened with distilled water as required. Gypsiferous biochar-
amended soils and control soil were sampled to assess their properties according to the previous

methods Naeem et al., (2017). Table 2 shows some biochar chemical properties.

Different soil potassium forms

We determined the quantity of K forms in each sample as mentioned by Knudsen et al.,
(1982). Water-soluble K was assessed by shaking a 5gm soil sample with 25 ml distilled water for
1 hour centrifuged and filtered. Exchangeable K was measured by shaking 10 gm of soil sample
in 25 ml of NH4sOAC at pH 7, centrifuged, and filtrated. The differences between extractable-
NH;O AC and water-soluble K represent exchangeable K.2.5 gm of soil sample boiled in 25 ml
of (HNOz 1M). Solution for 10 minutes to determine nitric acid extractable K. Non-exchangeable
K was determined by the differences between nitric acid extractable K and NH4- exchangeable K.
Total k was obtained by digestion of 1 gm of Soil sample in the acid mixture (6 M HCI + 48%
FH). The subtracting of HNO3z extractable K from total K represents mineral K. The results of

each K form represent the mean of three replicate determinations.

RESULTS AND DISSCUSION
The effects of biochar addition on the changes in soil chemical properties

Biochar addition significantly increases affects all soil chemical properties, soil fertility and crop
growth. According to table (2), biochar exhibited an increase in pH when compared with the
control soil. The pH values for the studied soil before adding biochar ranged between 7.3 -7.7,
while the pH values after adding biochar ranged between 7.4 -7.9. Our results are consistent with
other studies. Several researchers mentioned that biochar application to the soils led to an increase
in the soil pH (Lehmann et al., 2006 ; Sun et al., 2022 ). This is likely because the base ions affect

biochar in oxide form and soluble carbonates (Tan et al., 2017). Yuan et al., (2011) revealed a rise
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in the pH of the soil when compared to the control and this was anticipated given the high pH
values (10.2) of biochar because pyrolysis produces carbonates, basic oxides, and organic

carboxylates. Figure (2a) shows the different pH values before and after biochar adding.
B
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Figure 2 shows the effect before and after adding biochar to the study soil on both (a) pH values
(b) Electrical conductivity values (c)Cation exchange capacity values (d) Organic matter values.

The ash is the residual of biochar and significantly increases soil electrical conductivity
(E.C) because of basic soluble water cations content (Song et al., 2018; Khadem et al., 2021). EC
values of the studied soils before adding biochar ranged between 1.5 -3.7 dS/m, while the EC
values after adding biochar ranged between 1.9 - 4.3 dS/m. Our results indicated that the soil EC
value significantly increases because addition of biochar. Karimi et al., (2020) also reported that
biochar increased EC by 0.05 dS/m. In addition, some researchers joined the increase in EC values
with the addition of biochar to the greater alkaline cations like K+ (Beheshti et al., 2018). Our
study results are in agreement with the results of Song et al., (2018) the results ranged from (2.86-
4.75 dS/m) who mentioned that different types of biochar application could increase soil EC
figure(2b).

Pursuant to the findings of the experiment, biochar application has a significantly positive

effect on C.E.C values. C.E.C values of the studied soils before adding biochar ranged between
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4.8-11cmolc.kg?, while the C.E.C values after adding biochar ranged between 9.8-18cmolc.kg™
figure (2c). C.E.C is an important indicator of soil's ability to cation exchange, nutrient elements
storage, and soil quality (Solly et al., 2020). So the higher values of C. E.C point to high nutrient
element adsorption capacity which is necessary for plant growth (Antonangelo et al., 2024).
Biochar surfaces are rich with functional groups such as —OH and -COOH which react with soluble
metals in soil solution resulting in soluble metal complexes with electrostatic bonds (Blenis et al.,
2023). Besides the surface of functional groups, biochar has the ability to release the low molecular
weight of organic acid compounds which might contribute to the increase of soil C.E.C after the
addition of biochar. The stronger and higher adsorption capacity of biochar against nutrient
elements improves soil C.E.C to slow-release fertilizer storage and reduces nutrient loss via
leaching (Kapoor et al., 2022). The mechanism effect of biochar on C.E.C has been discussed
extensively by many others (Hagner et al., 2016; Shaaban et al., 2018). Tan et al., (2017)
mentioned that the addition of biochar to the soil with the ratio of 1:100 resulted in an increase in
C.E.C value by 0.92 cmolc.kg™ and increased continuously as biochar addition increased too.
However, the biochar effect on C.E.C is almost related to biochar origin materials, the condition
of biochar production, and soil characteristics.(Kuryntseva et al., 2023 ). Our study results are
consistent with those mentioned by other researchers, (Yuan et al., 2011; Laghari et al., 2015)
According to our study results, biochar application showed an influential factor on soil
organic matter content. Because biochar consists of several aromatic and aliphatic organic
compounds that contribute directly by increasing soil organic carbon (Lyu et al., 2018; Faloye et
al., 2019). Additionally, soil organic carbon stability will be increased and its degradation will be
prevented by the porosity of the biochar structure (Liu et al., 2019).The surface morphology
structure of biochar facilitates the adsorption of soil organic carbon onto its outer surfaces and this
mechanism could be inhabiting the deterioration of soil organic carbon and indirectly increase Soil
organic matter content (Tan et al., 2017, Yu et al., 2019). Organic matter values of the studied
soils before adding biochar ranged between 3.5 -13 gm kg?, while the organic matter values after
adding biochar ranged between7.9 -19 gm kg figure (2d). These results are consistent with those
of (Dong et al., 2016; Gross et al., 2021), biochar distribution increased the content of organic
matter, confirming its potential as an efficient strategy for C storage. Because biochar raises the

pH of the soil, it prevents soil carbon mineralization in neutral or alkaline soils (Liu et al., 2019).
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Table 2. physical and chemical characteristics of gypsiferous soils before and after adding biochar

- Before adding biochar After adding biochar
o
s g PSD gm kg™ cCeECc om @S CC EC  CEC
Z =3 . Q4 O3 . O.M.
S pH dsmt cmolckg pH dSm cmol gm kg™
@ Sand Silt Clay  Texture ! gmkg* ! kgt
1 Shirgat 530 235 235 SCL 73 15 11 2 21 311 77 19* 18* 16~
2 Shirgat 505 285 210 L 74 23 10 13 35 342 76 28 16* 19
3 Makhool 497 315 188 L 75 27 9.2 1 51 253 75 29% M5 g
4 Makhool 480 350 170 L 73 20 8.9 10 65 284 78  25* 13;9 13.6*
5 Baje 499 351 150 L 72 28 8.7 9 87 363 77 33 3% o
6 Baje 603 255 142 sL 74 26 8.3 95 115 314 74 32¢ 33 gope
7 Tikrit 510 35 135 L 77 31 74 85 132 213 78 37+ 24 qix
8 Tikrit 533 342 125 sL 75 22 6.8 75 161 252 77 28¢ 8 qpox
9 Dour 508 357 115 sL 74 27 6.6 63 176 313 78 35¢ 15 gg«
10 Dour 586 307 107 sL 75 28 6.2 45 187 332 77 34c L1 gox
I Tuz 604 301 95 sL 73 37 55 72 200 206 75 43¢ 05 e«
12 Tuz 634 276 90 sL 76 35 48 35 226 212 79 42¢ 98 1.9

Note. * means a significant difference between before and after adding biochar for EC, CEC, and O.M

There are four types of potassium found in soil: total, soluble, exchangeable, and non-exchangeable. Only a
small percentage of the total potassium is made up of exchangeable and non-exchangeable potassium levels.
(Elbaalawy et al., 2016). There are equilibrium and kinetic reactions between the four forms of soil potassium that
affect the level of soil solution potassium table 3 shows potassium forms in studied soil before and after adding
biochar.

Table 3. Potassium forms in studied soil samples used before and after adding biochar.

5 before adding biochar after adding biochar

No § K-forms (Cmole; Kg*) K-forms (Cmole; Kg?)
. o

@ Soluble Exch Non- Exch Soluble Exch Non- Exch
1 Shirgat 0.041 0.19 0.41 0.075 0.22 0.61
2 Shirgat 0.037 0.18 0.37 0.070 0.21 0.57
3 Makhool 0.035 0.17 0.35 0.065 0.20 0.48
4 Makhool 0.032 0.15 0.30 0.062 0.18 0.44
5 Baje 0.028 0.14 0.28 0.058 0.17 0.38
6 Baje 0.026 0.11 0.26 0.056 0.15 0.36
7 Tikrit 0.022 0.10 0.24 0.048 0.13 0.34
8 Tikrit 0.019 0.09 0.23 0.045 0.12 0.33
9 Dour 0.017 0.09 0.22 0.041 0.11 0.32
10 Dour 0.015 0.09 0.19 0.035 0.10 0.29
11 Tuz 0.013 0.07 0.17 0.033 0.09 0.27
12 Tuz 0.011 0.05 0.15 0.031 0.08 0.25

Soil Solution Potassium
Soil solution potassium is the form of potassium that is directly taken up by plants and microbes and also is the
form most subject to leaching in soils (Meena et al., 2016). Levels of soil solution potassium are generally low unless

a recent amendment of potassium has been made to the soil (Rawat et al., 2016). Potassium that is soluble in water is

76



Al-Hamandi etal., TJAS Vol. 25, No.1: pp. 69-87

the potassium that is present in the liquid phase at all times and will rise in the soil solution when field conditions are
met. (Yahaya et al., 2023).Potassium and other soluble ions are the primary sites of chemical reactivity in soils, the
natural medium for plant growth, and the chemical fraction that is instantly exposed to the environment condition
(Hasanuzzaman et al., 2018). The soluble soil potassium significantly increased with the addition of biochar (Table
3). The addition of biochar to this soil caused the potassium soluble value to rise from ranging between 0.041 and
0.011 Cmolec Kg* before adding biochar and between 0.75 and 0.031 Cmolec Kg after adding biochar. These results
are consistent with what they found by Abu Zied Amin (2016), when 60 Mg ha™* of biochar was added to the calcareous
sandy soil, the amount of soluble potassium increased from 100.4 mg kg™ for the control treatment to 232.7 mg kg ™.
Even with low levels of biochar added, the soluble potassium in the soil rose noticeably with each subsequent
Dobermann et al., (1998) mentioned that water soluble potassium in indian soils range form (4 -125 mg kg™) because
biochar contains free nutrient cations like potassium and does not volatilize after burning during the biochar synthesis
process, this suggests that biochar can improve the accessible soil nutritional status of potassium. It was also
discovered that adding biochar to soil greatly increased the availability of basic cations like potassium (Farrar et al.,
2021; Bao et al., 2024). Exchangeable potassium is defined as the fraction that occupies sites in the soil colloidal
complex (Das et al., 2021). Unlike the pH-dependent negative sites on clays, non-specific adsorption sites occur at
the planar and edge positions of clay minerals as well as at the negative charges produced by the carboxylic and
phenolic groups of humus colloids (Strawn, 2021). The dissociation of H* from weak acid groups causes the negative
charges on the humus colloids and the edges of the amorphous clay minerals to grow as pH rises, despite the exchange
sites on clay particles created via isomorphic substitution having a relatively constant number (Alemayehu and
Teshome, 2021). This is known as exchangeable potassium, and it is quickly restored by the release of potassium
stored on the cation exchange sites of clay minerals and organic matter (K*) (Yadav and Sidhu, 2016). Potassium
deposits can also be "fixed" or trapped in 2:1 clay minerals between the plate-like units. By means of weathering,
these stocks replenish exchangeable potassium (Barré et al., 2008). When biochar was added, the exchangeable
potassium values for the soils under study ranged from 0.08 to 0.22 Cmolec Kg*, while the values of exchangeable
potassium before adding biochar ranged from 0.05 to 0.19 Cmolec Kg* Ayman and Fawzy (2023) reported an increase
in exchangeable potassium up to 367 mg kg™ for sandy soils and 415 mg kg for calcareous soils after adding 2%
olive stone biochar. Also, Abu Zied Amin (2016) obtained an increase in exchangeable potassium for about 28% by
using 20 Mg.ha of corn cop biochar in calcareous soils and Zhang et al., (2021) obtained increase in soil
exchangeable potassium by 30% in yellow-brown soil when they used 2% peanut shell biochar.

Non-exchangeable or fixed potassium differs from mineral potassium in that it is not bonded within the crystal
structures of soil mineral particles (Kubo et al., 2018). It is held between adjacent tetrahedral layers of octahedral
micas, vermiculites, and intergrade clay minerals such as chlorite and vermiculite (Paola et al., 2016). Potassium
becomes fixed because the binding forces between potassium and the clay surfaces are greater than the hydration
forces between individual potassium ions (Gurav et al., 2019). Potassium release is a gradual, diffusion-controlled
process as a result of the partial collapse of the crystal structures and the variable degrees of physical trapping of the
potassium ions (Mouhamad et al., 2016).
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The largest quantities of soil potassium are contained deep within crystalline, precipitated materials and this
insoluble potassium is classed as inert potassium (Sharma et al., 2024). The size and rate of release of the exchangeable
potassium fraction, plus the fixed fraction, determines the long-term need for potassium fertilisers (Islam et al., 2017).

The values of non-exchangeable potassium ranged between 0.15 and 0.41 Cmolec Kg™, before adding biochar
where as the non- exchangeable potassium values for studied soils ranged between 0.25 and 0.61 Cmolec Kgafter
adding biochar . Najafi-Ghiri et al., (2022) mentioned that cow manure biochar increased non-exchangeable potassium
to 2.09 fold compared to control soil content . Also, (Lu et al., 2020) pointed that the addition of 25 gm Kg* of
biochar increased non-exchangeable potassium about 141.9 mg Kg* in Entisol soil. The increase in the non-
exchangeable portion of potassium in the study soils is due to the dominance of 2:1 bilayer clay minerals such as
smectite and illite table (4), which are characterized by their high ability to isomorphic substitution, this ultimately
leaves a negative charge, leading to the adsorption of more positive cations, including potassium (Missana et al.,
2009). Iraqgi soils are characterized by their varying content of different clay minerals, and this is due to the source
material of those soils, the conditions of their formation, and the climate (Al-Hazaa, 2018). Mawlood (2018) noted
that the semctite group of minerals is the dominant component of clay in many Iraqi soils, and its percentage decreases
with depth and with the increase in the size of the clay grains. Illite is the second component in terms of percentage,
and its distribution is opposite to that of semctite. Chlorite is the third component in all clay separations, it was
observed that chlorite increased in the coarse clay with increasing depth. In another study on some selected soils in
different regions of Irag, Abdullah et al., (2019) indicated that the most important dominant clay minerals are
palygorskite, illite, chlorite, and vermiculite, in addition to the presence of calcite and quartz. He also confirmed that
the mineral montmorillonite is dominant in the northeastern regions of Iraq, table (4) shows dominant clay minerals
in soils.

Table 4. Potassium Clay minerals in Studied soils.

Minerals content%

No. Locations
Semctite Ilite Kaolinite Palygoriskite Chlorite

1 Shirgat +H++ +++ +++ ++ ¥
2 Shirgat +++ +++ +++ ++ ++
3 Makhool +++ +++ +++ +++ +
4 Makhool +++ -+ ++ + +
5 Baje +++ +++ ++ + ++
6 Baje +++ ++ ++ ++ ++
7 Tikrit +++ +++ +++ ++ +
8 Tikrit +++ ++ +++ ++ +
9 Dour ++++ +++ ++ +++ +
10 Dour ++++ e+ +++ ++ +
11 Tuz +++ ++ + + 4
12 Tuz +++ ++ + + +

Note. +4= Dominant (50-90%),+ 3= Major (20-50%0), +2= Minor (5-20%), +1= Trace (<5%0)
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Clay minerals found in arid and semi-arid areas are (smectite, illite, kaolinite, palygorskite and chlorite) (AL-Bayati

and AL-Obaydi, 2019). Generally believed that micaceous minerals such as chlorite and illite were largely inherited
from their parent rocks. (Abbaslou et al., 2013). Due to the high concentration of Mg and Si in the calcareous
environment, smectite makes up the majority of the clay minerals in the studied soil. These elements' mobility may
create ideal circumstances for smectite formation by transformation at the soil surface (Khormali and Abtahi, 2003).
The relative abundance of clay mineral fractions of study soil regions is shown in table 4.Semctite, illite, kaolinite,
palygoriskite, and chlorite were the principal minerals found. were discovered in nearly every surface horizon; this
may be the result of little precipitation (Hameed et al., 2018). Trivial convert in the abundance of these minerals were
found because of their inherited origin in calcareous soils (Owliaie et al., 2006). The incidence of smectite in soils is
due to its succession from the surrounding smectite-bearing cretaceous rocks (Mckinley et al., 1999). lllite and chlorite
plenty in soils is also largely related to their existence in parent rocks (Hashemi et al., 2003). The reduction of
downpours in this region led to the low comparative abundance of montmorillonite and its low dynamic transportation
in the soil profile (Enjavinezhad et al., 2024). Although preceding studies proclaimed the dominant minerals in study
soils were chlorite, illite, and kaolinite with the inherited origin (Salari et al., 2019). Several studies communicate an
increase in the amount of illite on the soil surface due to factors such as the formation of illite on the soil surface due
to biotite and muscovite weathering (Bétard et al., 2009). This study demonstrated that the studied soils have higher
concentrations of K-bearing minerals including illite and semctite.
Table (5) shows the correlation coefficients between potassium forms and soil properties. Most potassium forms and
soil properties showed a high correlation with each other, except The reduction of correlation coefficient of pH has a
very low correlation coefficient with all potassium forms and potassium dynamic parameters, ranged between (0.138-
0-276). Many researchers reported that biochar application increases soil pH due to base ions existing in biochar as
oxide forms (Lehmann et al., 2006; Sun et al., 2022).

Table 5. Correlation coefficients between potassium forms and some thermodynamic potassium parameters and soil

properties.

Soluble Exch Non-Exch  pH EC CEC o.M Clay
Soluble 0.9929**  0.8985** 0.2718  0.8257**  0.9710** 0.8566**  0.9756**
Exch _ 0.9026** 0.2767 0.8062**  0.9660** 0.8648**  0.9806**
Non-
Exch _ 0.2632  0.8314**  0.9693**  0.8587**  0.9783**

(*)and (** )significant at 0.01 ,0.05 probability level, respectively.

The high correlation coefficient values between potassium images and clay minerals are due to the ability of clay
minerals to adsorb potassium added by biochar to be a source for later potassium supply (Zhang et al., 2020). Biochar
is also an important source of organic matter containing potassium and increasing humic compounds that are
characterized by their wide surfaces contain high negative charges and can chelate potassium due to the high cation
exchange capacity of the soil after adding biochar (Geca et al., 2022). Also, organic matter contains high

concentrations of basic cations such as (calcium, magnesium, and potassium) and their oxides, which causes an
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increase in the electrical conductivity values of the soil solution (Wu et al., 2021). There was no positive relationship

between potassium images in the study soils and pH values because the study soils were originally basic soils and
contained lime and gypsum, so there was no significant change in pH values figure (3)( Xia et al., 2024).
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Figure 3 the linear relationship between the exchange potassium values of the study soils soil on both (a) pH values

(b) Electrical conductivity values (c)Cation exchange capacity values (d) Organic matter values (e) Clay values.

CONCLUSIONS

Gypsiferous soils in Iraq are poorly in nutrition elements because of nutrient leaching due to gypsum content.

Biochars is a good and cheap production that may change soil K distribution, pool, and dynamics depending on its

pyrolysis. Adding biochar to the soils improved some soil properties such as C.E.C and organic matter content. This

research shows that biochar increases soil potassium capacity and enhances potassium release conditions by increasing

the distribution of soluble and exchangeable potassium forms. All potassium forms

recorded high correlation

coefficient values with each other except pH showed a low correlation coefficients.
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